Самодельные трансформаторы и их расчет



Надежность сварочного трансформатора
Расчет сварочного трансформатора
Обмотка сварочного трансформатора
П-образный сварочный трансформатор
Сварочный трансформатор из статора электродвигателя
Сварочный аппарат из ЛАТРа

Устройство сварочного трансформатора
Выбор мощности сварочного трансформатора
Стандартная методика расчета трансформатора
Упрощенный расчет сварочного трансформатора
Выбор сечения магнитопровода
Подбор витков трансформатора опытным путем

Расчет самодельных сварочных трансформаторов имеет выраженную специфику, так как в большинстве случаев они не соответствуют типовым схемам и для них, по большому счету, нельзя применить стандартные методики расчета, разработанные для промышленных трансформаторов. Специфика состоит в том, что при изготовлении самоделок параметры их компонентов подстраиваются под уже имеющиеся в наличии материалы - в основном под магнитопровод. Часто трансформаторы собираются не из самого лучшего трансформаторного железа, мотаются не самым подходящим проводом, усиленно греются и вибрируют.

При изготовлении трансформатора, близкого по конструкции промышленным образцам, можно пользоваться стандартными методиками расчета. Такие методики устанавливают наиболее оптимальные значения обмоточных и геометрических параметров трансформатора. Однако, с другой стороны, эта же оптимальность является недостатком стандартных методик. Так как они оказываются совершенно бессильными при выходе какого-либо параметра за рамки стандартных значений.

Устройство сварочного трансформатора

По форме сердечника различают трансформаторы броневого и стержневого типов.
Типы магнитных сердечников: а - броневой, б - стержневой.
Типы магнитных сердечников: а - броневой, б - стержневой.

Трансформаторы стержневого типа, по сравнению с трансформаторами броневого типа, имеют более высокий КПД и допускают большие плотности токов в обмотках. Поэтому сварочные трансформаторы обычно, за редким исключением, бывают стержневого тика.

По характеру устройства обмоток различают трансформаторы с цилиндрическими и дисковыми обмотками.

Типы обмоток трансформаторов: а - цилиндрическая обмотка, б - дисковая обмотка.
Типы обмоток трансформаторов: а - цилиндрическая обмотка, б - дисковая обмотка. 1 - первичная обмотка, 2 - вторичная обмотка.
Самодельный сварочный аппарат
Самодельный сварочный аппарат

В трансформаторах с цилиндрическими обмотками одна обмотка намотана поверх другой. Так как обмотки находятся на минимальном расстоянии друг от друга, то практически весь магнитный поток первичной обмоткой сцепляется с витками вторичной обмотки. Только некоторая часть магнитного потока первичной обмотки, называемым потоком рассеяния, протекает в зазоре между обмотками и поэтому не связана со вторичной обмоткой. Такой трансформатор имеет жёсткую характеристику (про вольт-амперную характеристику сварочного аппарата читайте здесь, в конце статьи). Трансформатор с такой характеристикой не годится для ручной сварки. Для получения падающей внешней характеристики сварочного аппарата, в этом случае, используют или балластный реостат или дроссель. Наличие этих элементов усложняет устройство сварочного аппарата.

В трансформаторах с дисковыми обмотками первичная и вторичная обмотки отдалены друг от друга. Поэтому значительная часть магнитного потока первичной обмотки не связана со вторичной обмоткой. Ещё говорят, что эти трансформаторы имеют развитое электромагнитное рассеяние. Такой трансформатор имеет, необходимую, падающую внешнюю характеристику. Индуктивность рассеяния трансформатора зависит от взаимного расположения обмоток, от их конфигурации, от материала магнитопровода и даже от близко расположенных к трансформатору металлических предметов. Поэтому точный расчёт индуктивности рассеяния практически невозможен. Обычно, на практике, расчёт ведётся методом последовательных приближений с последующим уточнением обмоточных и конструктивных данных на практическом образце.

Регулировка сварочного тока, обычно, достигается изменением расстояния между обмотками, которые выполняются подвижными. В бытовых условиях трудно выполнить трансформатор с подвижными обмотками. Выход может быть в изготовлении трансформатора на несколько фиксированных значений сварочного тока (на несколько значений напряжения холостого хода). Более тонкая регулировка сварочного тока, в сторону уменьшения, может осуществляется укладыванием сварочного кабеля в кольца (кабель будет сильно нагреваться).

Особенно сильным рассеиванием и, следовательно, крутопадающей характеристикой отличаются трансформаторы П-образной конфигурации у которых обмотки разнесены на разные плечи, так как расстояние между обмотками у них особенно велико.

Обмотки трансформатора разнесенные на разные плечи: 1 - первичная, 2 - вторичная.
Обмотки трансформатора разнесенные на разные плечи: 1 - первичная, 2 - вторичная.

Но они теряют много мощности и могут не дать ожидаемый ток.

Отношения числа витков первичной обмотки N1 к числу витков вторичной обмотки N2 называется коэффициентом трансформации трансформатора n, и если не учитывать различные потери, то справедливо выражение:

n = N1/N2 = U1/U2 = I2/I1

где U1, U2 - напряжение первичной и вторичной обмоток, В; I1, I2 - ток первичной и вторичной обмоток, А.

Выбор мощности сварочного трансформатора

Прежде чем приступить к расчету сварочного трансформатора, необходимо четко определиться - на какой величине сварочного тока его предстоит эксплуатировать. Для электросварки в бытовых целях чаще всего используются покрытые электроды диаметром 2, 3 и 4 мм. Из них наибольшее распространение получили, наверное, трехмиллиметровые электроды, как наиболее универсальное решение, подходящие для сваривания как относительно тонкой стали, так и для металла значительной толщины. Для сварки двухмиллиметровыми электродами выбирается ток порядка 70А; "тройка" чаще всего работает на токе 110-120А; для "четверки" потребуется ток 140-150А.

Приступая к сборке трансформатора, разумным будет установить для себя предел выходного тока, и мотать обмотки под выбранную мощность. Хотя здесь можно ориентироваться и на максимально возможную мощность для конкретного образца, учитывая, что от однофазной сети любой трансформатор вряд ли способен развить ток выше 200А. При этом необходимо четко осознавать, что с увеличением мощности растет степень нагрева и износа трансформатора, необходимы более толстые и дорогие провода, увеличивается вес, да и не каждая электросеть может выдержать аппетиты мощных сварочных аппаратов. Золотой серединой здесь может быть мощность трансформатора, достаточная для работы наиболее ходовым трехмиллиметровым электродом, с выходным током 120-130А.

Потребляемая мощность сварочного трансформатора, и аппарата в целом, будет равна:

P = Uх.х. × Iсв. × cos(φ) / η

где Uх.х. - напряжение холостого хода, Iсв. - ток сварки, φ - угол сдвига фаз между током и напряжением. Так как сам трансформатор является индуктивной нагрузкой, то угол сдвига фаз всегда существует. В случае расчета потребляемой мощности cos(φ) можно принять равным 0,8. η - КПД. Для сварочного трансформатора КПД можно принять равным 0,7.

Стандартная методика расчета трансформатора

Эта методика применима для расчета распространенных сварочных трансформаторов с увеличенным магнитным рассеянием, следующего устройства. Трансформатор изготовлен на основе П-образного магнитопровода. Его первичная и вторичная обмотки состоят из двух равных частей, которые расположены на противоположных плечах магнитопровода. Между собой половины обмоток соединены последовательно.
Устройство сварочного трансформатора
Устройство сварочного трансформатора

Для примера возьмемся рассчитать с помощью этой методики данные для сварочного трансформатора рассчитанного на рабочий ток вторичной катушки I2=160А, с выходным напряжением холостого хода U2=50В, сетевым напряжением U1=220В, значение ПР (продолжительность работы) примем, скажем, 20% (про ПР см. ниже).

Введем параметр мощности, учитывающий продолжительность работы трансформатора:

Pдл = U2 × I2 × (ПР/100)1/2 × 0.001
Pдл = 50 × 160 (20/100)1/2 × 0.001 = 3,58 кВт

где ПР - коэффициент продолжительности работы, %. Коэффициент продолжительности работы показывает, сколько времени (в процентах) трансформатор работает в дуговом режиме (нагревается), остальное время он находится в режиме холостого хода (остывает). Для самодельных трансформаторов ПР можно считать равным 20-30%. Сам ПР в общем-то не влияет на выходной ток трансформатора, впрочем, как и соотношения витков трансформатора не слишком-то сказываются на параметре ПР у готового изделия. ПР в большей степени зависит от других факторов: сечения провода и плотности тока, изоляции и способа укладки провода, вентиляции. Однако с точки зрения приведенной методики считается, что для различных ПР более оптимальными будут несколько отличные соотношения между количеством витков катушек и площадью сечения магнитопровода, хотя, в любом случае, выходная мощность остается неизменной, рассчитанная на заданный ток I2. Ничто не мешает принять ПР, скажем, 60% самодельные трансформаторы и их расчет или все 100%, а эксплуатировать трансформатор на меньшем значении, как на практике обычно и происходит. Хотя, лучшее сочетание обмоточных данных и геометрии трансформатора обеспечивает выбор значения ПР пониже.

Для выбора числа витков обмоток трансформатора рекомендуется пользоваться эмпирической зависимостью электродвижущей силы одного витка E (в вольтах на виток):

E = 0,55 + 0,095 × Pдл (Pдл в кВт)
Е = 0,55 + 0,095 × 3,58 = 0,89 В/виток

Эта зависимость справедлива для широкого диапазона мощностей, однако наибольшую сходимость результатов дает в диапазоне 5-30 кВт.

Количество витков (сумма обеих половин) первичной и вторичной обмоток определяются соответственно:

N1 = U1/E; N2 = U2/E
N1 = 220/0,89 = 247; N2 = 50/0,89 = 56

где U1 - напряжение сети, В.

Номинальный ток первичной обмотки в амперах:

I1 = I2 × km/n

где km=1.05-1.1 - коэффициент, учитывающий намагничивающий ток трансформатора; n = N1/N2 - коэффициент трансформации.

n = 247/56 = 4,4
I1 = 160 × 1,1/4,4 = 40 А

Сечение стали сердечника трансформатора (см2) определяется по формуле:

S = U2 × 10000/(4.44 × f × N2 × Bm)
S = 50 × 10000/(4.44 × 50 × 56 × 1,5) = 27 см2

где f=50 Гц - промышленная частота тока; Bm - индукция магнитного поля в сердечнике, Тл. Для трансформаторной стали индукция может быть принята Bm=1.5-1.7 Тл, рекомендуется принимать ближе к меньшему значению.

Конструктивные размеры трансформатора приведены применительно к стержневой конструкции магнитопровода. Геометрические параметры магнитопровода в миллиметрах:

  • Ширина пластины стали из пакета магнитопровода
    a=(S×100/(p1×kc))1/2=(27×100/(2×0,95))1/2=37,7 мм.
  • Толщина пакета пластин плеча магнитопровода
    b=a×p1=37,7×2=75,4 мм.
  • Ширина окна магнитопровода
    c=b/p2=75,4×1,2=90 мм.

где p1=1.8-2.2; p2=1.0-1.2. Измеряемая по линейным размерам сторон собранного трансформатора площадь сечения магнитопровода будет несколько больше рассчитанного значения, надо учитывать неизбежные зазоры между пластинами в наборе железа, и равняется:

Sиз = S/kc
Sиз = 27/0,95 = 28,4 см2

где kc=0.95-0.97 - коэффициент заполнения стали.

Значение (a) подбирается ближайшее из сортамента трансформаторной стали, конечное значение (b) корректируется с учетом ранее выбранного (a), ориентируясь на полученные значения S и Sиз.

Высота магнитопровода методикой строго не устанавливается и выбирается исходя из размеров катушек с проводом, крепежных размеров, а также учитывается расстояние между катушками, которое выставляется при подстройке тока трансформатора. Размеры катушек определяются сечением провода, количеством витков и способом намотки.

Сварочный ток можно регулировать, перемещая секции первичной и вторичной обмоток относительно друг друга. Чем больше расстояние между первичной и вторичной обмотками, тем меньшим будет выходная мощность сварочного трансформатора.

Таким образом, для сварочного трансформатора со сварочным током 160А были получены значения основных параметров: суммарное количество витков первичных катушек N1=247 витков и измеряемая площадь сечения магнитопровода Sиз=28,4 см2. Расчет с теми же исходными данными, кроме ПР=100% даст несколько иные соотношения Sиз и N1: 41,6 см2 и 168 соответственно для того же тока 160А.

На что нужно обратить внимание, анализируя полученные результаты? Прежде всего, в этом случае соотношения между S и N для определенного тока действительны только для сварочного трансформатора, изготовленного по схеме с увеличенным магнитным рассеиванием. Если бы мы применили значения S и N, полученные для этого типа трансформатора, для другого трансформатора - построенного по схеме силового трансформатора (см. рисунок ниже), то выходной ток при тех же значениях S и N1 значительно возрос бы, предположительно в 1,4-1,5 раза или пришлось бы примерно во столько же раз увеличить количество витков первичной катушки N1 для сохранения заданной величины тока.

Схема силового трансформатора: 1 - первичная обмотка, 2 - вторичная обмотка.
Схема силового трансформатора: 1 - первичная обмотка, 2 - вторичная обмотка.

Сварочные трансформаторы, у которых секции вторичной катушки намотаны поверх первичной, получили значительное распространение при самостоятельном изготовлении сварочных аппаратов. Магнитный поток у них более сконцентрирован и энергия передается более рационально, хотя это приводит к ухудшению сварочных характеристик, которые однако, можно выправить дросселем или балластным сопротивлением.

Упрощенный расчет сварочного трансформатора

Неприемлемость во многих случаях стандартных методик расчета заключается в том, что они устанавливают для конкретной мощности трансформатора только единые значения таких основных параметров, как измеренная площадь сечения магнитопровода (Sиз) и количество витков первичной обмотки (N1), хотя последние и считаются оптимальными. Выше было получено сечение магнитопровода для тока 160А, равное 28 см2. На самом деле сечение магнитопровода для той же мощности может варьироваться в значительных пределах - 25-60 см2 и даже выше, без особой потери в качестве работы сварочного трансформатора. При этом под каждое произвольно взятое сечение необходимо рассчитать количество витков, прежде всего первичной обмотки, таким образом, чтобы получить на выходе заданную мощность. Зависимость между соотношением S и N1 близка к обратно пропорциональной: чем больше площадь сечения магнитопровода (S), тем меньше понадобиться витков обеих катушек.

Самой важной частью сварочного трансформатора является магнитопровод. Во многих случаях для самоделок используются магнитопроводы от старого электрооборудования, которое до того ничего общего со сваркой не имело: всевозможные крупные трансформаторы, автотрансформаторы (ЛАТРы), электродвигатели. Часто эти магнитопроводы обладают весьма экзотической конфигурацией, а их геометрические параметры невозможно изменить. И сварочный трансформатор приходится рассчитывать под то, что есть, - нестандартный магнитопровод, используя нестандартную методику расчета.

Наиболее важными при расчете параметрами, от которых зависит мощность, являются площадь сечения магнитопровода, количество витков первичной обмотки и расположение на магнитопроводе первичной и вторичной обмоток трансформатора. Сечение магнитопровода в данном случае измеряется по наружным размерам сжатого пакета пластин, без учета потерь на зазоры между пластинами, и выражается в см2. При напряжении питания сети 220-240В, с незначительным сопротивлением в линии, можно рекомендовать следующие формулы приближенного расчета витков первичной обмотки, которые дают положительные результаты для токов 120-180А для многих типов сварочных трансформаторов. Ниже приведены формулы для двух крайних вариантов расположения обмоток.

Для трансформаторов с обмотками на одном плече (рисунок ниже, а):
N1 = 7440 × U1/(Sиз × I2)
Для трансформаторов с разнесенными обмотками (рисунок ниже, б):
N1 = 4960 × U1/(Sиз × I2)

Трансформаторы с обмотками на одном плече и с разнесенными обмотками
Трансформаторы с обмотками на одном плече и с разнесенными обмотками

где N1 - примерное количество витков первичной обмотки, Sиз - измеренное сечение магнитопровода (см2), I2 - заданный сварочный ток вторичной обмотки (А), U1 - сетевое напряжение.

При этом надо учитывать, что для трансформатора с разнесенными по разным плечам первичной и вторичной обмотками вряд ли удастся получить ток более 140А - сказывается сильное рассеивание магнитного поля. Нельзя также ориентироваться на ток выше 200А для остальных типов трансформаторов. Формулы носят весьма приближенный характер. Некоторые трансформаторы с особенно несовершенными магнитопроводами дают значительно более низкие показатели выходного тока. Кроме того, существует много таких параметров, которые нельзя определить и учесть в полной мере. Обычно неизвестно, из какого сорта железа изготовлен тот или иной, снятый со старого оборудования магнитопровод. Напряжение в электросети может сильно изменяться (190-250В). Еще хуже, если линия электропередачи обладает значительным собственным сопротивлением, составляя всего единицы Ома, оно практически не влияет на показания вольтметра, обладающего большим внутренним сопротивлением, но может сильно гасить мощность сварки. Учитывая все вышеизложенное, рекомендуется первичную обмотку трансформатора выполнять с несколькими отводами через 20-40 витков.

Отводы первичной обмотки трансформатора
Отводы первичной обмотки трансформатора

В этом случае всегда более точно можно будет подобрать мощность трансформатора или подрегулировать ее под напряжение конкретной сети. Количество витков вторичной обмотки определяется из соотношения (кроме "ушастика", например из двух ЛАТРов):

N2 = 0,95 × N1 × U2/U1

где U2 - желаемое напряжение холостого хода на выходе вторичной обмотки (45-60В), U1 - напряжение сети.

Выбор сечения магнитопровода

Теперь мы знаем, как можно рассчитать витки катушек сварочного трансформатора под определенное сечение магнитопровода. Но остается вопрос - каким именно выбрать это сечение, особенно если конструкция магнитопровода позволяет варьировать его значение?

Оптимальное значение сечения магнитопрвода для типичного сварочного трансформатора было получено в примере расчета по стандартной методике (160А, 26 см2). Однако далеко не всегда оптимальные с точки зрения энергетических показателей значения являются таковыми, а то и возможными вообще, с точки зрения конструктивных и экономических соображений.

Например, трансформатор одной и той же мощности может иметь сечения магнитопровода с разницей в два раза: скажем 30-60 см2. При этом количество витков обмоток будет различаться тоже примерно в два раза: для 30 см2 придется мотать в два раза больше провода, чем для 60 см2. Если у магнитопровода небольшое окно, то вы рискуете тем, что все витки попросту не влезут в его объем или придется использовать очень тонкий провод - в этом случае необходимо увеличить сечение магнитопровода с целью уменьшения количества витков провода (актуально для многих самодельных трансформаторов). Вторая причина - экономическая. Если обмоточный провод в дефиците, то, учитывая его немалую стоимость, этот материал придется экономить по максимуму, если есть возможность, наращиваем магнитопровод до большего сечения. Но, с другой стороны, магнитопровод - самая тяжелая часть трансформатора. Лишняя площадь сечения магнитопровода - лишний и притом, весьма ощутимый вес. Проблема прибавки веса особенно сказывается тогда, когда трансформатор намотан алюминиевым проводом, вес которого намного меньше стали, а тем более меди. При больших запасах провода и достаточных размерах окна магнитопровода этот элемент конструкции имеет смысл выбирать потоньше. В любом случае не рекомендуется опускаться ниже значения 25 см2, не желательны также сечения выше 60 см2.

Подбор витков трансформатора опытным путем

В некоторых случаях о выходной мощности трансформатора можно судить по току первичной обмотки в режиме холостого хода. Вернее, здесь можно говорить не о количественной оценке мощности в режиме сварки, а о настройке трансформатора на максимальную мощность, на которую способна конкретная конструкция. Или же речь идет о контроле количества витков первичной обмотки, чтобы не допустить их недостатка в процессе изготовления. Для этого понадобится некоторое оборудование: ЛАТР (лабораторный автотрансформатор), амперметр, вольтметр.

В общем случае по току холостого тока нельзя судить о мощности: ток может быть разным даже для одинаковых типов трансформаторов. Однако, исследовав зависимость тока в первичной обмотке в режиме холостого хода, можно более уверенно судить о свойствах трансформатора. Для этого первичную обмотку трансформатора надо подключить через ЛАТР, что позволит плавно менять напряжение на ней от 0 до 240В. В цепь также должен быть включен амперметр.

Схема для проверки сварочного трансформатора
Схема для проверки сварочного трансформатора

Постепенно увеличивая напряжение на обмотке, можно получить зависимость тока от питающего напряжения. Она будет иметь следующий вид.

Зависимости тока в первичной обмотке трансформатора от питающего напряжения, в режиме холостого хода.
Зависимости тока в первичной обмотке трансформатора от питающего напряжения, в режиме холостого хода.

Сначала кривая тока полого, почти линейно возрастает до небольшого значения, далее скорость возрастания увеличивается - кривая загибается вверх, после чего следует стремительное увеличение тока. В случае, когда устремление кривой к бесконечности происходит до напряжения 240В (кривая 1), то это значит, что первичная обмотка содержит мало витков и ее необходимо домотать. Надо учитывать, что трансформатор, включенный на то же напряжение без ЛАТРа, будет брать ток примерно на 30% больше. Если же точка рабочего напряжения лежит на изгибе кривой, то при сварке трансформатор будет выдавать свою максимальную мощность (кривая 2). В случае кривых 3, 4 трансформатор будет иметь ресурс мощности, которую можно увеличить путем уменьшения витков первичной обмотки, и незначительный ток холостого хода: большинство самоделок ориентированы на это положение. Реально токи холостого хода различны для разных типов трансформаторов, в большинстве случаев находясь в интервале 100-500 мА. Не рекомендуется устанавливать ток холостого хода более 2А.

<< Предыдущая (Надежность) | Следующая >> (Обмотка)

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.
Литература

Закрыть ... [X]

Методика расчета и конструирования выходных Вязание крючок схемы одежда для барби


Самодельные трансформаторы и их расчет Сварочный трансформатор своими руками: расчеты и
Самодельные трансформаторы и их расчет Расчет сварочного трансформатора для любого
Самодельные трансформаторы и их расчет Простейший расчет силовых трансформаторов и
Самодельные трансформаторы и их расчет Расчет сварочного трансформатора
Самодельные трансформаторы и их расчет Трансформатор для сварки своими руками
Самодельные трансформаторы и их расчет GTA SAMP.:Lifestyle:. : Просмотр темы - Похищение по РП
Самодельные трансформаторы и их расчет MapleFly Best Immigration Consultants in Delhi, India
Самодельные трансформаторы и их расчет Vogue скачать бесплатно без регистрации
Самодельные трансформаторы и их расчет Американская резинка спицами! Вязание спицами для